Is There a Link between Foreclosure and Health?†

By Janet Currie and Erdal Tekin*

We investigate the relationship between foreclosures and hospital visits using data on all foreclosures and all hospital and emergency room visits from four states that were among the hardest hit by the foreclosure crisis. We find that living in a neighborhood with a spike in foreclosures is associated with significant increases in urgent unscheduled visits, including increases in visits for preventable conditions. The estimated relationships cannot be accounted for by increasing unemployment, declines in housing prices, migration, or by people switching from out-patient providers to hospitals. (JEL D14, F12, R31)

Foreclosure rates reached historically high levels in the United States during the recent economic crisis. According to RealtyTrac, a leading firm that monitors and markets foreclosed homes, a record 2.82 million homes faced foreclosure in 2009, a 21 percent rise from 2008 and a huge 120 percent jump from 2007.1 One in 45 homes (2.23 percent of all housing units in the United States) received at least 1 foreclosure filing during 2010. As policymakers have debated measures to stabilize the housing market and minimize the damage to the US economy, researchers have turned their attention to understanding the consequences of rising foreclosures.

While a number of studies have investigated the effect of the foreclosure crisis on outcomes such as home prices and sales, residential investment, and durable consumption (e.g., Immergluck and Smith 2006; Calomiris, Longhofer, and Miles 2008; Rogers and Winter 2009; Harding, Rosenblatt, and Yao 2009; Mian, Sufi, and Trebbi 2010), there has been no large-scale investigation of the effect of the crisis on health. The foreclosure crisis represents a significant shock to the financial well-being of many households, and thus provides a fresh opportunity to examine the relationship between financial distress and health. Financial distress may have

* Currie: 316 Wallace Hall, Princeton University, Princeton, NJ 08540 (e-mail: jcurrie@princeton.edu); Tekin: Department of Public Administration and Policy, School of Public Affairs, American University, and National Bureau of Economic Research (NBER) (e-mail: tekin@american.edu). We would like to thank three anonymous referees, Peter Muennig, Yongheng Deng, Craig Garthwaite, Haruko Noguchi, Hannes Schwandt, and the seminar participants at American University, Arizona State University, George Mason University, Mathematica, the Rockwood Foundation, the University of Hawai‘i, the University of South Carolina, the University of North Carolina, Union College, Kansas State University, the University of Nevada at Las Vegas, the University of Illinois at Chicago, Princeton University, Tilburg University, University of Toronto, the Yale School of Public Health, the Federal Reserve Board, and the 22nd Annual East Asian Seminar on Economics for helpful comments, and Tyler White of RealtyTrac for helping us to access the data. We also thank Chandler McClellan, Jessica Van Parys, Dawn Koffman, and Thu Vu for excellent
direct effects on health, but can also cause changes in health behaviors, which in turn can have negative health consequences.

The goal of this paper is to investigate whether the foreclosure crisis had an adverse effect on health. To accomplish this goal, we assemble quarterly data on all foreclosures, all emergency room (ER) visits, and all hospitalizations from four states (Arizona, California, Florida, and New Jersey) that are among the ten states that have been hardest hit by the crisis. Unfortunately, there are no large individual-level longitudinal sources of data linking foreclosure and health. In the absence of such data, we match data on foreclosures, hospitalizations, and ER visits at the zip code level.

Our main specifications control for zip code fixed effects, zip code-specific linear time trends, and county by quarter by year fixed effects so that our estimates are identified by changes within zip codes (rather than comparisons of, for example, rich and poor neighborhoods). We find strong evidence that increases in foreclosure are associated with increases in nonelective (i.e., urgent and unscheduled) hospital and ER visits and with increases in visits that could be prevented by appropriate preventive care. While it is difficult to identify the causal mechanism underlying these relationships given the available data, we consider several possibilities.

First, it is possible that for many people, ill health causes foreclosure. However, the huge run-up in foreclosures over the period we examine was unlikely to be caused by an epidemic of ill health among American homeowners. Thus, the foreclosure crisis offers a way to rule out this hypothesis as a major explanation for our results, and allows us to focus on the question of whether foreclosures affect health rather than vice versa.

Second, given the previous literature linking unemployment and ill health, it might be the case that the relationship we observe represents a response to unemployment rather than to foreclosure per se. It is worth noting that while unemployment increased by two to three times in our study states, foreclosure rates increased by a factor of 10. We will also show below that the beginning of the foreclosure crisis preceded the increase in unemployment, and that for the subperiod from the second quarter of 2005 to the fourth quarter of 2007, foreclosures were rising while unemployment was steady or falling. We show that the relationship between foreclosure and hospital visits was as strong or stronger during this subperiod. Also note that our baseline models include interactions of county, quarter, and year in order to account for all time-varying features of local labor markets including unemployment rates.

A third possibility is that people in financial distress may stop going to outpatient providers and visit emergency rooms instead. That is, the increases in visits that we see could represent patients switching venues rather than an increase in actual health conditions that warrant medical care. We address this concern by estimating models using a subset of serious acute conditions that almost always result in emergency visits to the hospital, so that there is little scope for venue switching. These conditions include: heart attack, stroke, respiratory failure, gastrointestinal hemorrhage, and kidney failure. We find that foreclosures are associated with significant increases in hospitalizations for all of these conditions.
population, we examine foreclosures and visits relative to the population of the zip code in 2000. Thus, it is not possible for people exiting the zip code to increase the visit rate, even if the remaining people are less healthy. We also directly examine the predicted change in hospitalization and ER visit rates given changes in population characteristics between 2005 and 2010, and show that there was little relationship between this predicted change and changes in foreclosure rates.

Foreclosure represents a source of financial distress for many people including those who were not themselves subject to foreclosure, but who saw the value of their housing fall. In order to investigate this potential mechanism, we estimate models that control for housing prices as well as vacancies. This specification change has little effect on the estimated impact of foreclosure.

Our findings indicate that a rise in foreclosures is associated with significant increases in hospital and emergency room visits for conditions including mental health problems, heart attack, and stroke, as well as for conditions such as hypertension, that could be prevented by appropriate care. We find statistically significant effects for all age groups including children and the elderly.

The rest of the paper is laid out as follows. In Section I, we provide some background information about the foreclosure crisis, and previous work on the relationship between economic activity and health. We then discuss our data in Section II and methods in Section III, followed by the results in Section IV and extensions in Section V. We provide a brief conclusion in Section VI.

I. Background

Whatever the root causes, delinquencies and foreclosures soared starting in late 2006 (Campbell, Giglio, and Pathak 2011; Calomiris, Longhofer, and Miles 2008; Harding, Rosenblatt, and Yao 2009; Lin, Rosenblatt, and Yao 2009).\(^2\) The turmoil in the housing market spread to capital markets and helped to generate the current continuing economic malaise (e.g., Green 1997; Leamer 2007; Gauger and Snyder 2003).

A. How Could Foreclosures Affect Health?

Before considering how foreclosure could affect health, we acknowledge the literature arguing that ill health is an important cause of foreclosure (e.g., Warren et al. 2009; Pollack and Lynch 2009).\(^3\) We argue however, that the foreclosure crisis represents an increase in financial distress that has not been caused by a sudden epidemic of ill health among US homeowners. Moreover, while in hindsight many commentators have said that a crash was inevitable, the timing and severity of it

\(^2\)Explanations that have been offered for the foreclosure crisis include a relaxation in underwriting standards and the expansion of mortgage credit to subprime borrowers (e.g., US Department of Housing and Urban Development 2009; Dell’Ariccia, Igan, and Laeven 2008; Demyanyk and Van Hemert 2011), mortgage securitization having an
were certainly a surprise to almost all observers (Mian and Sufi 2010; Calomiris, Longhofer, and Miles 2008; Demyanyk and Van Hemert 2011). It is this feature of the foreclosure crisis that presents a unique opportunity to explore the consequences of foreclosure on health. While it is reasonable to suppose that there is always a baseline level of foreclosures that is caused by misfortunes including ill health, there is no reason to suppose that the spike in foreclosures was caused by the health problems of individual homeowners.

High levels of foreclosure in a neighborhood may affect health because housing is the major source of wealth for most people. Therefore, declines in housing prices represent a significant negative shock to wealth and a potential source of financial distress, not just for those who suffer foreclosure, but also for their neighbors. For example, Mian, Sufi, and Trebbi (2011) conclude that a one standard deviation increase in foreclosures in a zip code results in a growth rate in housing prices that is two-thirds of a standard deviation lower.

There is a very large literature on the relationship between income and health, too large to be properly reviewed here (see Smith 1999). This literature must confront the problem that low-income individuals may have other attributes besides low income that contribute to poor health, and truly exogenous changes in wealth are hard to find. Two recent papers (Hoynes, Miller, and Simon (forthcoming); Evans and Garthwaite (forthcoming)) examine large increases in the Earned Income Tax Credit and find positive effects on the health of infants and mothers, respectively. The later also shows some evidence of improvements in biomarkers associated with stress.

A second potential mechanism is through stress. Stress is thought to affect health both by depressing the immune system and through the direct action of “stress hormones” on factors such as blood pressure and cardiovascular health (McEwen, 1998a, 1998b). Stress can also have harmful consequences through psychological responses such as depression. A growing literature suggests that stressful life experiences are associated with both physical and mental illnesses (Goldbergen and Breznitz 1993; McEwen 1998a, 1998b; Cooper 2005; Schneiderman, Ironson, and Siegel 2005). In related work, Deaton (2012) finds negative effects of the Lehman Brother’s failure on self-reported stress and well-being.

While the press has focused on reports of homeowners being victimized by unscrupulous lenders, it is possible that others who were foreclosed were property speculators with little money at stake, and who may not have found the process particularly stressful. Bajari, Chu, and Park (2008) consider two broad categories of foreclosures: those among homeowners who rationally decide to “walk away” from a mortgage when it is no longer in their interest to pay; and those who lose their homes due to short-term liquidity constraints caused by conditions such as the credit freeze, interest rate “resets,” and balloon mortgages. Bajari, Chu, and Park conclude that short-term liquidity constraints were at least as important as the decline in housing prices in explaining the increase in defaults. Furthermore, many homeowners might not be aware of their option to strategically walk away from their mortgages or of the cost thereof (Goodstein et al. 2011). There is evi
mortgage defaults may have been strategic (Experian 2012, and Wyman 2009, 2010; Tirupattur, Chang, and Egan 2010; Fair Isaac 2011, Riley (forthcoming)). Hence, it is reasonable to believe that many homeowners were “in over their heads” and likely to find the experience of foreclosure stressful.

Reductions in wealth can also affect health through changing health behaviors. Several studies have linked economic crisis to reductions in the utilization of medical care (e.g., Lusardi, Schneider, and Tufano 2010; Williams and Collins 1995; Feinstein 1993). As we will see below, foreclosures are linked to increases in visits to hospitals and ERs for preventable conditions, suggesting that some people are cutting back on preventive care and/or increasing unhealthy behaviors in response to financial stress.

B. Effects of Unemployment on Health

While the health effects of foreclosure have been ignored, there is an extensive and related literature examining the effects of unemployment and job loss on health. Ruhm (2000, 2003, 2006), Ruhm and Black (2002), Neumayer (2004), and Gerdtham and Ruhm (2006) find that higher unemployment is associated with lower mortality rates, while Dehejia and Lleras-Muney (2004) find that higher unemployment improves infant health. These patterns have been attributed to recession-induced changes in health behaviors, though the evidence on this channel is mixed (see Xu and Kaestner 2013 and Deb et al. 2011). Miller et al. (2009) argue that cyclical changes in mortality are concentrated in the young and the old and so are unlikely to represent changes in health behaviors among working age adults. Their finding of age-related patterns in the health effects of unemployment provides a further rationale for our examination of age-related patterns in the effects of foreclosures below.

Sullivan and von Wachter (2009) follow a large sample of individuals subjected to mass layoffs and find significantly higher death rates due to accidents and heart conditions. Eliason and Storrie (2009a,b) examine data from plant closings in Sweden in 1987 and 1988 and find increases in suicide, self harm, accidents, and alcohol-related causes in the 12 years following job displacement. Browning and Heinesen (2012) report similar results for plant closings in Denmark.

While foreclosure and unemployment are both negative economic shocks, they differ in key respects. Foreclosure does not entail increases in leisure and unemployment does not generally have spillovers in terms of other peoples’ wealth (though a mass layoff might). Still, the literature suggests that unemployment can have negative health effects. Since the foreclosure crisis was followed by the worst recession since the Great Depression, it is reasonable to wonder whether the health effects that we find are primarily due to unemployment rather than foreclosure.

Figure 1A shows the unemployment rate and the proportion of foreclosures as a fraction of outstanding mortgages in our four analysis states between the second quarter of 2005 and the second quarter of 2009. In Figure 1B, we present the same information separately for each of these states. The figures show that the rise in foreclosures preceded the rise in unemployment since the bottom of the housing market.
Figure 1A. Average of Unemployment and Foreclosure Rates for Analysis States

Figure 2: Residual Foreclosure Rates after Controlling for Unemployment

when unemployment was largely constant or falling and foreclosures were rising. However, it is important to note that our zip code-level models include indicators for each combination of county and time period in our models, which control for the effects of county unemployment rates and all other time-varying county-level characteristics. Any effects of foreclosure that we find are net of these controls.

Figure 1B suggests that while the unemployment rate evolved fairly similarly across the four states, there were dramatic differences in the pattern of foreclosures. In Florida, foreclosures rose to 10 percent of mortgage filings, whereas in New Jersey, which experienced similar levels of unemployment in 2009, foreclosures hovered at slightly over 4 percent of mortgage filings. Figure 2 focuses on the variation in foreclosure rates in states with similar levels of unemployment, bringing in data for all 50 states. More specifically, we estimated a regression of foreclosures as a percentage of all mortgages in each state and year on the unemployment rate for each state and year. In this regression, we use all US states and data on the foreclosure inventory and outstanding mortgages drawn from the National Delinquency Survey of the Mortgage Bankers Association of America. As shown in Figure 2, there is considerable variation in the rate of foreclosure across states (especially after 2008) even after accounting for the variation in unemployment rates.

II. Data

A. Data from the Panel Study of Income Dynamics
Table 1—Characteristics of Those With and Without Foreclosure (PSID)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>foreclosure</td>
<td>no</td>
<td>foreclosure</td>
<td>current</td>
<td>own, no</td>
<td>rent</td>
</tr>
<tr>
<td>Age 20–49</td>
<td>0.490</td>
<td>0.648</td>
<td>0.515</td>
<td>0.489</td>
<td>0.140</td>
<td>0.668</td>
</tr>
<tr>
<td>Age 50–64</td>
<td>0.285</td>
<td>0.277</td>
<td>0.358</td>
<td>0.422</td>
<td>0.314</td>
<td>0.188</td>
</tr>
<tr>
<td>65 and over</td>
<td>0.222</td>
<td>0.075</td>
<td>0.127</td>
<td>0.090</td>
<td>0.546</td>
<td>0.138</td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>0.744</td>
<td>0.651</td>
<td>0.788</td>
<td>0.693</td>
<td>0.849</td>
<td>0.620</td>
</tr>
<tr>
<td>African American</td>
<td>0.145</td>
<td>0.197</td>
<td>0.094</td>
<td>0.171</td>
<td>0.072</td>
<td>0.252</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.086</td>
<td>0.129</td>
<td>0.087</td>
<td>0.136</td>
<td>0.058</td>
<td>0.108</td>
</tr>
<tr>
<td>Head unemployed</td>
<td>0.070</td>
<td>0.107</td>
<td>0.045</td>
<td>0.159</td>
<td>0.028</td>
<td>0.105</td>
</tr>
<tr>
<td>Married</td>
<td>0.473</td>
<td>0.431</td>
<td>0.675</td>
<td>0.470</td>
<td>0.564</td>
<td>0.203</td>
</tr>
<tr>
<td>Children under 18</td>
<td>0.287</td>
<td>0.506</td>
<td>0.396</td>
<td>0.463</td>
<td>0.128</td>
<td>0.279</td>
</tr>
<tr>
<td>Health is excellent</td>
<td>0.178</td>
<td>0.095</td>
<td>0.214</td>
<td>0.059</td>
<td>0.131</td>
<td>0.159</td>
</tr>
<tr>
<td>Health is poor</td>
<td>0.052</td>
<td>0.073</td>
<td>0.025</td>
<td>0.109</td>
<td>0.082</td>
<td>0.058</td>
</tr>
<tr>
<td>Head smokes</td>
<td>0.197</td>
<td>0.315</td>
<td>0.147</td>
<td>0.218</td>
<td>0.134</td>
<td>0.285</td>
</tr>
<tr>
<td>Head drinks</td>
<td>0.650</td>
<td>0.609</td>
<td>0.710</td>
<td>0.631</td>
<td>0.561</td>
<td>0.637</td>
</tr>
<tr>
<td>Observations</td>
<td>8,355</td>
<td>327</td>
<td>3,445</td>
<td>41</td>
<td>1,204</td>
<td>3,273</td>
</tr>
</tbody>
</table>

Notes: The number of observations in the first two columns sums to 8,682. The number of observations in columns 3 through 6 also sum to 8,682. Each of the 8,682 respondents answers on behalf of their household. Means are weighted using 2009 PSID sample weights.

have information both about foreclosure and health. The Panel Study of Income Dynamics (PSID) added questions about foreclosure in 2009, but the sample size is small enough that only 327 families had experienced a foreclosure since 2001. A sample of this size is far too small to analyze the relationship between foreclosure and health, though the PSID can be used to provide a portrait of what type of households are most likely to suffer foreclosure.

The PSID Housing Distress and Mortgages supplement in 2009 included questions about the family’s foreclosure history over the past decade. The PSID also asks about general health questions (on a five-point scale) and whether a doctor has ever told respondents that they have a number of specific health conditions. Our PSID sample had 8,682 respondents in 2009. Of these respondents, 8,355 had no foreclosure in their family since 2001.

Table 1 provides an interesting starting point for our analysis. The first two columns divide the sample into those who ever experienced foreclosure (since 2001) and all others. The questions pertain to the household head. Those who have suffered foreclosure are generally younger, with relatively few elderly people in that group. Whites are underrepresented in the ever foreclosure group, while blacks and Hispanics are overrepresented. Those who have been foreclosed are somewhat less

4The PSID is a biannual survey of American households conducted by the University of Michigan’s Institute for Social Research since 1968.

5Specifically, the four questions are: “Has your bank or lender started the process of foreclosing on your home?—First/Second Mortgage.” “In what month and year did the foreclosure start?—First/Second Mortgage.” “During the last 8 years, that is, since 2001, have you, or anyone in your family living there ever owned a home on which a foreclosure was started?” and “In what month and year did the foreclosure start?” The respondents are family heads and the foreclosure questions pertain to anyone living in the same family.
likely to be married, but more likely to have children under age 18 in the household. They are less likely than others to report excellent health, but only slightly more likely to report that their health is poor. They are much more likely to smoke, but somewhat less likely to drink than others.

The next four columns of the table look at foreclosure status in 2009. A few points stand out. First, one reason that the elderly respondents are less likely than others to be in foreclosure is that they are more likely to own their homes free and clear. This finding suggests that while elderly people might be impacted by falling housing prices, they would not be as likely as younger households to suffer short-term credit constraints due to changes in the terms of a mortgage. Second, while households with a head who is unemployed are disproportionately more likely than others to be in foreclosure, only 16 percent of those households currently in foreclosure have unemployed heads. Hence, many employed people are also experiencing foreclosure, or living with the threat of foreclosure. A third observation is that those who are currently in foreclosure report worse health than others.

These comparisons are suggestive of a negative relationship between foreclosure and health and helpful for determining what demographic groups might be most affected by foreclosure, but the small numbers of foreclosures in the PSID makes it difficult to analyze this relationship in a multivariate model. Hence, we turn to administrative hospital records for that analysis.

B. Foreclosures, Hospitalizations, and Emergency Room Visits

We focus on the states of Arizona, California, Florida, and New Jersey for several reasons. First, we wish to focus on states that have recently had high levels of foreclosures. Together these four states comprised almost 50 percent of all the foreclosure filings in the United States in 2008 (RealtyTrac 2009). They were all in the top 10 foreclosure states, posting the third, first, second, and tenth largest totals of foreclosures in the country in 2010, respectively. Second, we wish to use hospital discharge and emergency room data for entire states rather than from a sample of hospitals. Thus, the data we have assembled from these four states include every hospitalization and every emergency room visit. Third, we wish to focus our analysis at the zip code level because, as shown in Figure 3, there is a great deal of variation in foreclosure rates within counties. The figure shows the number of foreclosures divided by population in the zip code (from the 2000 census) in Florida. The heavy black lines show the county boundaries. Clearly, there is a good deal of variation between zip codes within a county, and even within the boxed area showing central Florida, which was particularly hard hit overall.

It is important to include ER visits in addition to hospitalizations, because financial constraints can affect whether the person first presents at the ER, as well as the probability that someone on the margin is admitted to the hospital if they do appear at the ER. These four states were the only high foreclosure Healthcare Cost and
Figure 3. Foreclosures by Zip Code within Counties, Florida 2009

Notes: White areas are places that are not covered by a ZCTA, and include places such as large bodies of water or national/state parks.
Source: RealtyTrac

Utilization Project (HCUP) states to both make ER data available and to include the zip code of each patient’s residence over our period.

Foreclosure data are available at the zip code level monthly between April 2005 through December 2009 from RealtyTrac. RealtyTrac is a leading foreclosure monitoring and marketing company that collects data from public records at the local
level, which is where legal documents for foreclosures are recorded, posted, and published. With coverage that accounts for more than 90 percent of the US population, the RealtyTrac data have been widely used by the media as well as researchers studying foreclosures (e.g., Mian, Sufi, and Trebbi 2011; Pettit et al. 2009; Gaffney 2009).

The foreclosure data include information about both a notice of trustee sale (NTS) and/or a notice of foreclosure sale (NFS). A state generally has either NTS or NFS, and this depends on whether the state uses a judicial or a nonjudicial process in foreclosures, so we construct measures of foreclosures as NTS + NFS. A judicial process requires court action on a foreclosed home, which usually takes longer. In general, NTS is available only for nonjudicial states, while NFS is only available for judicial states. Among our sample states, Florida and New Jersey are judicial foreclosure states. For example, while the length of the foreclosure process in judicial states depends on the court’s caseload, the quickest foreclosure usually takes about 135 days in Florida and 270 days in New Jersey. On the other hand, in our nonjudicial states, Arizona and California, the process can take about 90 and 117 days from notice to sale, respectively (Foreclosure Laws and Procedures by State 2013). Zip code level data on housing prices in each quarter come from Zillow. Zillow does not compile data for smaller zip codes so including this variable reduces our sample size. Another limitation of Zillow compared to, for example, the Case-Shiller housing price indices that are available for selected metropolitan statistical areas, is that Zillow does not adjust the index to reflect changes in the properties being sold.

Stress and financial losses associated with foreclosure may differ depending on whether an individual loses a primary residence, vacation home, or an investment property. Moreover, the effects of foreclosure on owners of vacation or investment properties may be felt not in the areas where the properties are located, but in the areas where the owners reside. Therefore, including zip codes with a large concentration of vacation and investment properties in the analysis sample may bias the estimates toward zero. To guard against such bias, we use census data on seasonal and occasional housing to identify zip codes with a high proportion of investment properties. We exclude zip codes in the top 10 percent of the distribution of houses for seasonal and occasional use in 2010. The excluded zip codes are illustrated in red in Figure 4. As shown in the figure, the excluded areas appear to match well with one’s expectations regarding the location of seasonal and occasional properties in these states. For example, the excluded zip codes in New Jersey are along the Jersey Shore and in the Delaware water gap, while those in Florida are along the coasts and in the Orlando area. We also estimated all of our models without excluding these zip codes (results are in Table 8). Confirming our expectations, estimates are smaller and somewhat less precisely estimated when zip codes with many vacation homes

9Mian, Sufi, and Trebbi (2011) define foreclosures as NTS + NFS + REO using data from the RealtyTrac. However,
or investment properties are included, although they are qualitatively similar to the results excluding vacation homes.

Our health measures come from administrative state data bases. States collect information about every hospital inpatient and ER visit, which they use to regulate hospitals and improve quality. We use these data to create composite measures of state hospital quality and health care access for each state.

Figure 4. Concentration of Seasonal and Occasional Houses Based on 2010 Census Data

Notes: Dark grey areas represent ZCTAs that rank in the top 10 percent of zips for seasonal housing units. Light grey areas are places that are not covered by a ZCTA, and include places such as large bodies of water or national/state parks.

Source: US Census Bureau